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Descrizione del progetto: 

The training of a neural network (NN) is a high-dimensional statistical inference problem requiring 
large amounts of data. In this sense the first barrier for a NN to work efficiently is precisely the lack 
of data. In a mathematical formalization, given a certain model for the environment and one for the 
machine, the main question is how much data, sampled from the environment, are necessary for the 
machine to efficiently learn a representation of the environment and thus make good predictions. 
What is crucial is that, regardless of any technological or computational barrier, there exists a 
fundamental sharp threshold below which it is just impossible for a particular machine to learn 
anything about the environment. In the Statistical Mechanics (SM) framework, it has been 
characterized as a phase transition from a regime in which it is possible for the machine to learn and 
generalize well, to one in which the information present in the dataset is insufficient. The objective 
of the project is to develop a solid theory characterizing these information-theoretical barriers and 
how they depend on the model for the environment, the one for the machine and their interplay. An 
useful approach toward a mathematical formalization of the problem is called teacher-student 
scenario: a NN with a given architecture (teacher) defines the model for the environment, while 
another one (student) has to learn something about this environment by leveraging a dataset 
provided by the teacher. In this controlled setting it is possible to precisely define both the accuracy 
in reproducing the training set and the generalization error. An information barrier leading to 
learning reliability phase transitions is the sum of two ingredients. 1)purely data scarcity: even in 
the best case of a student that uses the same model of the teacher, the amount of examples is not 
enough for the student to generalize well and infer the correct teacher parameters; 2)model’s 
misspecifications: even with a large training set, if the student doesn’t know the teacher’s model and 
uses a different one for learning, it may happen that this model’s gap becomes also an information 
gap. In typical situations both contribute to defining an information limit for learning, in particular 
their effects do not combine trivially. Aim of this project’s objective is to analyze both situations, 
which in the SM jargon refer to problems on and out the Nishimori line[N01]. Despite most of ML 
applications are based on supervised approaches, which are task specific and require labeled data, 
with the growth of the number of tasks and their complexity there is an increasing attention towards 
unsupervised (recently called self-supervised) approaches, in which the label is the data itself or 
part of it and the ultimate machine’s task is trying to learn the generative model of the dataset. The 
idea is that a self-supervised training can lead to a machine that has learnt the general rules of the 



game, or of the environment in which it is operating, and later is able to specialize more efficiently 
(in terms of labeled data needed) on many different tasks. A paradigm of self-supervised learning 
architectures is the Deep Boltzmann Machine (DBM). In terms of generative model (or direct 
problem) a DBM has been intensively studied [T03,M21,BCMT15] but still there are many open 
problems concerning how to generalize the Parisi theory to non-convex structures like this, starting 
from the free energy computation to the characterization of equilibrium states. In the teacher-
student scenario the training set of a student DBM is composed of configurations sampled from 
another teacher DBM. As shown in [BGST17], in this controlled environment, the landscape of the 
parameter’s space can be defined in terms of a Gibbs measure which is the dual of the one defining 
the generative model. Phase transitions in the generative model thus become transitions between 
different learning regimes and are therefore related to the presence of information-theoretical 
barriers. For this reason it is fundamental to study the SM of DBM, starting from the generative 
model to its relation with the inverse problem of learning. ROLE OF TRAINING SIZE: A 
disordered-to-order transition can be associated with the switching from the regime in which the 
student can learn from the one in which the information present in the dataset is insufficient because 
of its scarcity. The transition is known only for a RBM [BGST17,HVH19], conjectured for a 
number of hidden units larger than two [DHRT21] and in any case without a rigorous proof. We aim 
at formalizing these results, extending them to many hidden units and generalizing the approach to 
the case of a DRBM, by studying its corresponding dual measure and by considering different 
weights distributions to mimic a dataset with a more general structure. We start from the well 
specified teacher-student scenario that represents a comfort-zone because the posterior associated 
with the inference problem is a Gibbs measure on the Nishimori line. We aim to relax this 
assumption and study the case where data structure and network architecture do not match. ROLE 
OF WIDTH: We consider RBMs with more hidden units than patterns in the data. Depending on the 
size of the dataset and network hyperparameters we expect an overfitting transition to a regime 
where the excess number of hidden units are used to distinguish examples which are actually highly 
correlated by deriving from the same pattern [AABD22]. We also plan to investigate how this 
regime changes if hidden units are organized on different layers and the network becomes deep. 
ROLE OF REGULARIZATION AND ACTIVATION FUNCTION: Another interesting conjecture, 
corroborated by numerical findings in [KH16], is the existence of a transition in the way patterns 
are codified: ANNs can learn by prototypes or by features, also known as compositional 
representation [TM17]. It seems to depend on the activation function and on the weights 
regularization. We want to prove the existence of such a transition and build a phase diagram 
especially for DRBMs, where compositional representations become hierarchically structured and 
other regimes may appear. ROLE OF DEPTH: Most of the previous questions need to be 
investigated in the case of networks with many layers. We aim at doing that starting from the 
observation that a DBM is a particular case of a RBM where a portion of visible units are never 
observed. This motivates the investigation of an intermediate class of self-supervised learning 
problems with RBMs where visible units are partially and randomly observed, a sort of semi self-
supervised learning. REPLICA SYMMETRY BREAKING: Dealing with teacher-student scenarios 
with misspecifications the problem is not ensured to be replica symmetric [N01] . It is necessary to 
generalize the Parisi theory of Replica Symmetry Breaking [G03] to the class of non-convex NNs 
[M21]. This is a difficult mathematical challenge that we propose to tackle with recently developed 
techniques at the boundary between SM [G03,P13] and pde theory [MP20]. These activities are part 
of a more structured 2-years project on Statistical Mechanics of Learning Machines, funded by 
PRIN 2022. 
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